Journal of Organometallic Chemistry, 273 (1984) 295–302 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ORGANOZINNVERBINDUNGEN

XXIX *. ÜBER DAS "DI-(9-PHENANTHRYL)-ZINN". EINE NEUUNTERSUCHUNG

WILHELM P. NEUMANN* und JIANXI FU **

Lehrstuhl für Organische Chemie I der Universität Dortmund, Otto-Hahn-Str., D 4600 Dortmund 50 (B.R.D.)

(Eingegangen den 24. April 1984)

Summary

The substance prepared from 9-phenanthryl magnesium bromide with $SnCl_2$ and described as "di-(9-phenanthryl)tin" (see G. Bähr and R. Gelius, Chem. Ber., 91 (1958) 829) has been shown to be a mixture of at least seven products. Five of them were isolated in a pure form by chromatography and identified by instrumental analysis and degradation: the cyclostannanes $(Phen_2Sn)_3$, $(Phen_2Sn)_4$ and $(Phen_2Sn)_6$ (largest fraction), and the open-chain stannanes Phen_3Sn-SnPhen_3 and Phen_3Sn-Phen_2Sn-SnPhen_3, besides a polymer (Phen = 9-phenanthryl).

Zusammenfassung

Die aus 9-Phenanthryl-magnesium-bromid mit $SnCl_2$ dargestellte und als "Di-(9phenanthryl)-zinn" beschriebene Substanz (siehe G. Bähr und R. Gelius, Chem. Ber., 91 (1958) 829) erwies sich als ein Gemisch aus mindestens 7 Produkten. 5 davon konnten mittels Chromatographie rein isoliert und durch instrumentelle Analyse sowie Bausteinanalyse identifiziert werden: Die Cyclostannane (Phen₂Sn)₃, (Phen₂Sn)₄, (Phen₂Sn)₆ (stärkste Komponente) sowie die offenkettigen Stannane Phen₃Sn-SnPhen₃ und Phen₃Sn-Phen₂Sn-SnPhen₃, daneben ein Polymer (Phen = 9-Phenanthryl).

Einführung

Die Chemie der schweren Carben-Analogen und dabei insbesondere der Stannylene R_2 Sn hat in den letzten Jahren erhebliches Interesse gefunden [3]. Im all-

^{*} Für XXVIII. Mitteilung, siehe Lit. 1.

^{**} Stipendiat vom Northwestern College of Agriculture, Wugong, Shaanxi, Volksrepublik China, 1982-1984.

gemeinen handelt es sich um kurzlebige Teilchen, die zu vielfältigen Reaktionen fähig sind bzw. rasch polymerisieren. Jedoch sind auch stabile monomere Stannylene R_2Sn bekanntgeworden, z.B. Fischer's Dicyclopentadienyl-zinn [4] infolge elektronischer Effekte oder Lappert's Dialkyl-stannylen [5] infolge der stark raumfüllenden Gruppen. Auch Aminogruppen können derart stabilisieren, wie z.B. in Veith's Stannylen [6].

In früheren Jahrzehnten beschriebene "monomere Zinndialkyle R_2 Sn" konnten durch moderne analytische Methoden als Polymere, Cyclostannane oder andere Produkte aufgeklärt werden [3,6,7].

Nun beschrieben Bähr und Gelius 1958 [2] ein Di-(9-phenanthryl)-zinn * ausführlich und als Monomer. Letztere Eigenschaft wurde 1964 bezweifelt [8], da eindeutige Kriterien fehlten, und nachdem sich "Diphenylzinn" als Perphenylcyclostannan erwies [9]. Jedoch wurde 1966 das Mössbauer-Spektrum zunächst zugunsten des Monomers Phen₂Sn interpretiert [10], später aber von Zuckerman et al. zugunsten eines Oligomers [11]. Weiteres ist unseres Wissens nicht bekannt. Da die Phen-Gruppe stark raumfüllend ist und somit tatsächlich ein Stannylen R₂Sn oder zumindest ein leicht spältbares Di- oder Oligomer vorliegen könnte, waren wir im Rahmen unserer Arbeiten über Stannylene an einer Klärung interessiert.

Darstellung und Auftrennung von "Phen₂Sn" *

Mehrfache Wiederholung der Originalvorschrift [2] unter Argon ergab halogenfreie Produkte ohne Sn-H- und Sn-O-Gruppen (IR) mit praktisch identischen Elementaranalysen, jedoch deutlich verschiedenen mittleren Teilchengewichten, die das Drei- bis Vierfache des für monomeres Phen₂Sn zu Erwartenden (473.1) ergaben, siehe Tabelle 1, Proben 1-3. Somit liegt im wesentlichten ein Oligomerengemisch vor, Gl. 1, Ausbeute 93%:

$$2n \operatorname{Phen}-\operatorname{Br}^{n\operatorname{Mg}} 2n \operatorname{Phen}-\operatorname{MgBr}^{n\operatorname{SnCl}_2} "(\operatorname{Phen}_2\operatorname{Sn})_n"$$
(1)

Arbeiten unter Lichtausschluss, bei 0-5 °C oder rascheres Zutropfen änderte nichts Erkennbares, Proben 4 und 5.

Nach zahlreichen vergeblichen Trennversuchen mittels Kristallisation nach früheren Erfahrungen [8] zeigte sich eine Trennmöglichkeit mittels DC: Alle Proben bestanden aus denselben 7 Komponenten, wenn auch in unterschiedlichen Anteilen. Jede Komponente war, solange Luft und Licht ausgeschlossen blieben, beständig und veränderte ihr DC-Verhalten nicht, behielt also bei erneuter DC den R_{f} -Wert bei und wanderte auch unter anderen Bedingungen als einheitliche Fraktion:

 R_{f} -Werte von I-VII auf DC-Platten (siehe Exp. Teil) mit Benzol/n-Hexan 2/1.

I II III IV V VI VII 0.74 0.68 0.64 0.59 0.55 0.46 0.03

Isolierung grösserer Mengen bereitete zunächst erhebliche Schwierigkeiten, gelang aber mittels langwieriger und mehrfach wiederholter Säulenchromatographie. Die

^{*} In dieser Arbeit wird der 9-Phenanthryl-Rest als Phen bezeichnet.

Proben	Farbe	Schmp	Element	aranalyse	(%)	Halogen	Molekular-
		(Zers.) (°C)	C	Н	Sn		gewicht
1	orange- gelb	183-184	71.24	3.68	27.30	kein	1896
2	orange- gelb	198–199	71.21	3.63	-	keın	1938
3	orange- gelb	198–199	70 .9 0	3 90	-	kein	1336
4	gelb	179-179	68.99	4.68	25 71	keın	2009
5	gelb	179–180	70.66	3 94	24 61	keın	1556

TABELLE 1 DATEN VON "(Phen₂Sn)_n" GEMÁSS GLEICHUNG 1

Aufarbeitung war verlustreich. VII war offenbar ein uneinheitliches Polymer und wurde nicht weiter untersucht.

Von I-III, V und VI (Hauptkomponente) standen aber schliesslich hinreichende, mit den DC-Fraktionen identische Mengen zur Verfügung, so dass die Strukturermittlung aussichtsreich wurde.

Strukturermittlung von I-III, V und VI

Alle Fraktionen waren in Lösung empfindlich gegen Licht und Luft, im festen Zustand aber stabil, mikrokristallin und zersetzten sich sichtbar erst > 300 °C. ¹H-NMR und IR zeigten lediglich Phen-Reste, jedoch keinerlei OH-, Sn-H- oder Sn-O-Banden an. Alle waren stark zinnhaltig und halogenfrei.

Substanz I verbrauchte erst in siedendem Toluol Iod [7] und bildete dabei ausschliesslich Phen₃SnI, dieses mit MeMgBr Phen₃SnMe. Beide wurden mittels DC anhand von Standardproben [12] identifiziert. Diese Fakten, ferner die Elementaranalyse und das Molekulargewicht, siehe Tabelle 2, erwiesen I als Hexa-(9-phenanthryl)-distannan (Gl. 2):

$$\frac{Phen_{3}Sn-SnPhen_{3}}{(I)} \xrightarrow{I_{2}/110 \,^{\circ}C} 2Phen_{3}SnI \xrightarrow{2MeMgBr} 2Phen_{3}SnMe$$
(2)

Das Auftreten des Distannans mag hier zunächst überraschen, wird aber verständlich, da auch andere Distannane R_6Sn_2 , R = aromatich, z.B. Ph, analog entstehen können. Von präparativem Nutzen wurde diese Reaktion bei raumfüllenden Arylresten, wenn man das intermediäre Ar₃SnMgBr mit 1,2-Dibromethan umsetzte [13]. Bemerkenswert ist auch die träge Reaktion der Sn-Sn-Bindung mit Iod, wo doch selbst der raumfüllende Mesitylrest eine analoge Spaltung noch bei -15° C erlaubt [13].

Substanz II reagierte bei 70-75°C mit Iod, vollständig erst nach 6 h (DC) unter

Formel	Farbe	Elementar	ranalyse	Molekularge-	Schmp	DC		MN-H1	R	¹¹⁹ Sn-NMR
		(Gef (ber.	((%))	wicht (Gef (ber))	(°C)	R,	Losunes-	(mqq)		(mqq)
		C	Н			-	mittel	H _d	H _{ar}	
Phen ₆ Sn ₂	farblos	77 70 (77 56)	4 10 (4.18)	1278 3 (1300 8)	> 300	0 74			4	
Phen ₈ Sn ₃	farblos	75.80 (75 83)	4.00 (4.09)	1790 1 (1773 9)	226–227 "	0 68			4	
(Phen ₂ Sn) ₃	blassgelb	71 10 (71 08)	3 86 (3.83)	14137 (14195)	230–231 ^a	0 64	Benzol/		ų	
(Phen ₂ Sn) ₄	hellgelb	71 15 (71 08)	3 78 (3 83)	1943 4 (1892.6)	219-220 "	0.55	n-Hcxan		4	
(Phen ₂ Sn) ₆	gelb	71.08 (71 08)	3.70 (3.83)	2816 9 (2838 9)	208–209 ^a	0 46	(2/1)		4	
Phen, SnCl	farblos	73 85 (73 55)	4.00 (3 97)	(685 9)		0 76	Encesig/			
Phen ₂ SnCl ₂	farblos	61.70 (61 80)	3 30 (3.33)	- (544 2)	221-222	0 54	n-Hexan			
Phen ₂ SnI ₂	blassbraun	- (46 26)	- (2 50)	- (7270)	> 280	0 52]	(1/4)			
Phen ₃ SnMe	farblos	78.02 (77 62)	4 45 (4 54)	- (665.4)	205-206	039	Benzol/	1 23	6.9–9.0	
Phen ₂ SnMc ₂	farblos	71.90 (71 61)	4.90 (4.81)	- (503 2)	108-109	0 54	n-Hexan	0.83	6.9-9.0	- 56 38
PhenSnMe ₃	farbios	60 29 (59 87)	5 27 (5.32)	(341 0)	59-60	0 86	(1/2)	042	6.9-9.0	
" Zersetzung h	6-85 (m, H _{ar})									

TABELLE 2. ANALYSENDATEN DER VERBINDUNGEN I-III, V UND VI

Bildung von Phen₃SnI (Hauptmenge) und Phen₂SnI₂. Identifizierung wie oben, (siehe Gl. 3 und Tabelle 2) ergab das Octa-(9-phenanthryl)-tristannan II:

$$\begin{array}{cccc} Phen_{3}Sn-Phen_{2}Sn-SnPhen_{3} \xrightarrow{2I_{2}/70\,^{\circ}C} & 2Phen_{3}SnI + Phen_{2}SnI_{2} & (3) \\ (II) & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

Substanz III verbrauchte bereits bei -78 °C rasch Iod und bildete nur Phen₂SnI₂. Endgruppen sind also nicht vorhanden. Dies legt, zusammen mit dem Molekulargewicht und der Elementaranalyse, (Tabelle 2), die Struktur des Hexa-(9phenanthryl)-cyclotristannans III (Gl. 4) sehr nahe:

$$\begin{array}{c}
\operatorname{SnPhen}_{2} & \xrightarrow{3I_{2}/-78^{\circ}C} 3\operatorname{Phen}_{2}\operatorname{SnI}_{2} \xrightarrow{6\operatorname{MeMgBr}} 3\operatorname{Phen}_{2}\operatorname{SnMe}_{2} & (4) \\
\operatorname{Phen}_{2}\operatorname{Sn-SnPhen}_{2} & (111)
\end{array}$$

Diese Substanz erwies sich als besonders licht- und luftempfindlich. Die hohe Reaktivität ist bei dem hier überraschend auftretenden Dreiring aus Zinnatomen verständlich. Damit wird ein zweites Derivat des Cyclotristannans bekannt, nachdem Masamune et al. [14] das Hexa-(2,6-diethylphenyl)-cyclotristannan beschrieben. Sie erhielten es aus Ar_2SnCl_2 (Ar = 2,6-Diethylphenyl) und Lithium-naphthalin in Dimethoxyethan. Die 3 Sn-Sn-Abstände sind 2.854–2.870 Å und somit länger als bei der ungespannten Sn-Sn-Bindung mit 2.78–2.80 Å.

Substanz IV wurde mittels DC angezeigt, ihre Menge war aber zu gering für weitere Untersuchungen. Sie muss löslicher sein als V und VI. Ob hieraus—in Analogie zu den Eigenschaften der perphenylierten Cyclogermane [15]—auf das perarylierte Cyclopentastannan geschlossen werden kann, muss vorerst offenbleiben.

Substanz V reagierte mit Iod bei -50 °C, jedoch vollständig erst nach 5 h (DC). Deshalb führten wir die Spaltung der Sn-Sn-Bindungen bei 0 °C (2 h, DC) durch und erhielten als Hauptprodukt Phen₂SnI₂ neben sehr wenig PhenI und PhenSnI₃ (identifiziert als PhenSnMe₃, DC). Deren Mengen nahmen in Gegenwart von überschüssigem Iod mit der Zeit allmählich zu, siehe hierzu unten. Zusammen mit den weiteren Daten (siehe Tab. 2), folgt für V die Struktur des Octa-(9-phenanthryl)-cyclotetrastannans, (Gl. 5). Wenige andere Cyclotetrastannane sind bekannt und wurden auf verschiedenen Wegen erhalten [7].

$$\frac{4I_{2}}{Phen_{2}Sn-SnPhen_{2}} \rightarrow 4Phen_{2}SnI_{2} \xrightarrow{8MeMgBr} 4Phen_{2}SnMe_{2}$$
(5)
$$| | Phen_{2}Sn-SnPhen_{2}$$
(V)

Substanz VI verhielt sich bei der Bausteinanalyse mittels Iod ganz analog zu V, so dass aus der Summe der Argumente, siehe auch Tabelle 2, die Struktur des Dodeca-(9-phenanthryl)-cyclohexastannans folgt, (Gl. 6).

$$\frac{\text{Phen}_{2}\text{Sn}-\text{SnPhen}_{2}}{\text{Phen}_{2}\text{Sn}-\text{SnPhen}_{2}} \xrightarrow{6I_{2}/-78\,^{\circ}\text{C}} 6\text{Phen}_{2}\text{SnI}_{2}$$

$$\frac{12\text{MeMgBr}}{12\text{MeMgBr}} = 30\,^{\circ}\text{C}$$

$$6\text{Phen}_{2}\text{SnMe}_{2}$$

$$(6)$$

Nebenreaktionen durch C-Sn-Spaltung

Bisher ist unbestritten, dass Iod bei Raumtemperatur lediglich Sn-Sn-Bindungen spaltet, nicht aber C-Sn-Bindungen (Ausnahmen: Allyl-Sn, Benzyl-Sn, C \equiv C-Sn) und insbesondere nicht C=C-Sn-Gruppen [7]. So waren wir überrascht, bei längerer Dauer der Umsetzungen (2)–(6) als angegeben auch kleine Mengen niedriger arylierten Zinns neben Phen-1 zu finden, nach der Grignard-Methylierung auch höher aryliertes Zinn. Durch Optimierung der Reaktionszeit mittels DC-Kontrolle blieben diese Störungen ohne Einfluss. Zur Aufklärung unternahmen wir die folgenden Versuche.

Reines Phen₂SnCl₂, mit überschüssigem Iod 2 h bei 20°C in Benzol gehalten, zeigte mittels DC kleine Mengen an PhenI und an PhenSnCl₂I. Nach Umsetzung mit einem Überschuss an MeMgBr war die Hauptmenge Phen₂SnMe₂, daneben zeigte sich mittels DC und ¹H-NMR aber sehr wenig PhenSnMe₃ und, überraschend, Phen₃SnMe. Somit laufen folgende Umsetzungen ab:

Phen₂SnCl₂ + $I_2 \xrightarrow{\text{langsam}}$ PhenSnCl₂I + Phen-I

 $PhenI + MeMgBr \rightleftharpoons PhenMgBr + MeI$

Phen₂SnCl₂ + PhenMgBr \rightarrow Phen₃SnCl + MgBrCl

Phen₃SnCl + PhenMgBr \rightarrow Phen₄Sn(in wenigen Fällen) + MgBrCl

Alle Arylzinn-halogenide können natürlich durch MeMgBr in die entsprechenden Methylverbindungen übergeführt werden. Die interessante "Umgrignardierung" liess sich auch wie folgt belegen:

PhenBr + MeMgBr
$$\xrightarrow[30°C]{30°C}$$
 PhenMgBr + MeBr
90°C \downarrow + SnCl₄
1 h

Phen₃SnMe + Phen₂SnMe₂ + Spuren anderer Verbindungen

Experimenteller Teil

Alle Reaktionen wurden unter trockenem Schweissargon durchgeführt. Bei Arbeiten mit 9-Phenanthrylzinn-Verbindungen musste ausserdem auf Lichtausschluss geachtet werden. Die Reinigung und Trocknung der verwendeten Lösungsmittel und Ausgangschemikalien geschah nach üblichen Labormethoden.

Zur instrumentellen Analytik standen folgende Geräte zur Verfügung: ¹H-NMR: Varian EM 360 A (chemische Verschiebung gegen TMS intern); ¹¹⁹Sn-NMR: Bruker AM 300 (300 MHz); IR: Perkin–Elmer 577; Elementaranalysen: Carlo Erba Elemental Analyzer Mod. 1106; Molekulargewichtsbestimmungen: Knauer Dampfdruck-Osmometer (Lösungsmittel: Benzol). Dünnschichtchromatographie: MN Polygram SilN-HR/UV₂₅₄ (0.2 mm Kieselgel); Säulenchromatographie: MN-Kieselgel 60 (0.2–0.5 mm/35–70 mesh ASTM).

Di-(9-phenanthryl)-zinn

Zu 7.0 g (37 mmol) SnCl₂ [16] in 30 ml Benzol tropft man bei 0-5 °C 89 mmol

einer braunen 9-Phenanthrylmagnesium-bromid-Lösung, aus Mg-Spänen und 9-Bromphenanthren [17,18] in Benzol/Ether (1/2) zu. Nach 1 h Kochen unter Rückfluss wird wie üblich aufgearbeitet. Aus der eingeengten benzolischen Lösung fällt das Rohprodukt, 16.2 g (93%), nach Zugabe von 50 ml n-Hexan aus, nach Umfällen mittels Benzol/n-Hexan erhält man 13 g (74%) eines gelben Pulvers, Schmp. 199–199.5 °C. Gef.: C, 70.90; H, 3.90. $C_{28}H_{18}Sn$ (473.1) ber.: C, 71.08; H, 3.83%. Das Dünnschichtchromatogramm (Benzol/n-Hexan 2/1) lässt 7 Komponenten erkennen.

Säulenchromatographie

Benzol und n-Hexan werden in verschiedenen Verhältnissen als Eluat verwendet. Auf der Säule zersetzt sich das Gemisch zum grössten Teil, wodurch man aus 10 g Gemisch folgende Komponenten isolieren kann (DC-Eluat: Benzol/n-Hexan 2/1): 0.16 g (Phen₃Sn)₂, R_f 0.74; 0.25 g (Phen₃Sn)₂SnPhen₂, R_f 0.68; 0.1 g (Phen₂Sn)₃, R_f 0.64; 0.25 g (Phen₂Sn)₄, R_f 0.55; 0.63 g (Phen₂Sn)₆, R_f 0.46 und 0.05 g uneinheitliches Polymer, R_f 0.03.

Bausteinanalyse am Beispiel von (Phen₂Sn)₃

Innerhalb einer Stunde werden bei $-78 \,^{\circ}$ C 26.3 ml (1.26 mmol) einer toluolischen Iodlösung zu 0.6 g (0.42 mmol) (Phen₂Sn)₃ in 60 ml Toluol zugetropft, wobei Phen₂Snl₂ (R_f 0.52, Eisessig/n-Hexan 1/4) entsteht. Bei $-30 \,^{\circ}$ C werden 4 ml 1.9 M (7.6 mmol) MeMgBr in Et₂O zugegeben. Nach üblicher Aufarbeitung erhält man Phen₂SnMe₂. Schmp. 108–109 $^{\circ}$ C. R_f 0.54 (Benzol/n-Hexan 1/2). ¹H-NMR (CCl₄) (δ ,ppm), 0.83 (s, Sn(CH₃)₂), 6.9–9.0 (m, H_{ar}); ¹¹⁹Sn-NMR (CDCl₃) (δ gegen Me₄Sn), -56.38.

Reaktion von Phen₂SnCl₂ mit Iod

0.5 g (0.92 mmol) Phen₂SnCl₂ werden in 15 ml Benzol bei 20 °C 2 h lang mit 10 ml 0.049 M (0.49 mmol) Iodlösung umgesetzt, 1.3 ml 2.3 M (2.99 mmol) MeMgBr zugetropft und 1.5 h unter Rückfluss gekocht, wonach man Phen₂SnMe₂ R_f 0.54 (Benzol/n-Hexan 1/2) erhält. ¹H-NMR (CCl₄), (δ , ppm), 0.83 (s, SnMe₂) 6.9–9.0 (m, H_{ar}), Phen₃SnMe R_f 0.39 (Eluat wie oben); ¹H-NMR (CCl₄) (δ , ppm), 1.23 (s, SnMe) 6.9–9.0 (m, H_{ar}) und wenig PhenSnMe₃ R_f 0.66, (Eluat wie oben); ¹H-NMR (CCl₄), (δ , ppm), 0.42 (s, SnMe₃), 6.9–9.0 (m, H_{ar}).

Umsetzung von 9-Bromphenanthren mit MeMgBr

0.6 g (2.3 mmol) 9-Bromphenanthren werden in 20 ml Benzol bei 20 °C über 2 h mit 5 ml 2.3 M (11.5 mmol) MeMgBr umgesetzt, 0.6 g (2.3 mmol) SnCl₄ zugefügt und bei 90–95 °C 1 h gekocht. Nach üblicher Aufarbeitung erhält man Phen₂SnMe₂, R_f 0.54 (Benzol/ n-Hexan 1/2); ¹H-NMR (CCl₄), (δ , ppm), 0.83 (s, SnMe₂), 6.9–9.0 (m, H_{ar}) und Phen₃SnMe, R_f 0.39 (Eluat wie oben); ¹H-NMR (CCl₄) (δ , ppm), 1.23 (s, SnMe), 6.9–9.0 (m, H_{ar}).

Dank

Jianxi Fu dankt der Regierung der Volksrepublik China für das Stipendium und dem Lehrstuhl für Organische Chemie I der Universität Dortmund für den Arbeitsplatz und die Chemikalien. Wir danken dem Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen, Düsseldorf, für die Förderung des Vorhabens.

Literatur

- 1 U. Schröer und W.P. Neumann, J. Organomet. Chem, 105 (1976) 183.
- 2 G. Bahr und R. Gelius, Chem. Ber., 91 (1958) 829.
- 3 (a) W.P. Neumann, Nachr. Chem. Techn. Lab., 30 (1982) 190; (b) W.P. Neumann, The Stannylenes R₂Sn, Freund Publ., Tel Aviv, 1978; (c) Neue Ergebnisse R. Marx, W.P. Neumann und K. Hillner, Tetrahedron Letters, 25 (1984) 625.
- 4 E.O. Fischer und H. Grubert, Z. Naturforsch., 116 (1956) 423
- 5 P.J. Davidson, D H. Harris und M.F. Lappert, J. Chem. Soc., Dalton Trans., (1976) 2268, 2275.
- 6 M. Veith, Angew. Chem., 87 (1975) 287, Angew. Chem. Int Ed. Engl., 14 (1975) 263.
- 7 W.P. Neumann: The Organic Chemistry of Tin, J. Wiley, New York 1970, insbs. S. 134 ff.
- 8 W P. Neumann und K. Konig, Liebigs Ann. Chem., 677 (1964) 12
- 9 W.P. Neumann und K. Konig, Liebigs Ann. Chem., 677 (1964) 1.
- 10 V.I. Baranovsku, B.E. Dzevitskii, L.M. Krizhanskii und B.I. Rogozev, Zh. Strukt. Khim., 7 (1966) 808.
- 11 M.P. Bigwood, P.J. Corvam und J.J. Zuckerman, J. Am. Chem. Soc., 103 (1981) 7643
- 12 Jianxi Fu, Manuskript in Vorbereitung.
- 13 H.U. Buschhaus, W.P. Neumann und Th. Apoussidis, Liebigs Ann. Chem., (1981) 1190.
- 14 S. Masamune, L.R. Sita und D.J. Williams, J. Am Chem Soc., 105 (1983) 630
- 15 W.P. Neumann und K. Kühlein, Liebigs Ann. Chem., 683 (1965) 1.
- 16 H. Stephen, J. Chem. Soc., (1930) 2786.
- 17 C.A Dornfeld, J.E. Callen und G H Coleman, Organic Syntheses, Coll 3 (1955) 134.
- 18 H. Henstock, J. Chem. Soc., (1923) 3097